

JFlixTM Movie Rental Application

A Technical Overview

By

Smita Joshi

January 31, 2007

Abstract

JFlixTM is a Struts-based movie rental application powered by Software Tree’s JDX Object-
Relational Mapper (OR-Mapper) that simplifies data integration. This application is based
on the Model View Controller (MVC) design pattern and uses Sakila, the MySQL sample
database. It demonstrates how JDX reduces the amount and complexity of the data access
code in the business logic layer by bridging the Object-Relational impedance mismatch
seamlessly.

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

JFlix – A Movie Rental Application

Table Of Contents

INTRODUCTION... 3

DATABASE SCHEMA... 4

DOMAIN MODEL ... 5

JDX OR-MAPPER CONCEPTS .. 6

Object-Relational Mapping File (ORMFile) ... 6
Mapping Unit.. 6
JXResource ... 6
JXResourcePool ... 6

JFLIX OR-MAPPING FILE (JFLIX.JDX) .. 7

JFLIX USE CASES .. 8

JFLIX ARCHITECTURE AND IMPLEMENTATION... 9

Database Tier .. 10
Presentation Tier... 10
Struts Framework Files and Work Flow .. 11
Business Logic Tier .. 12
Movie Check Out: Use Case Details ... 14

SUMMARY... 18

ACKNOWLEDGEMENTS ... 18

REFERENCES .. 18

TRADEMARKS... 18

APPENDIX... 19

Appendix A: Start-up Servlet web.xml ... 19
Appendix B: Struts Configuration File struts-config.xml ... 20
Appendix C: ORMFIle jflix.jdx ... 21
Appendix D: Business Logic Layer Methods in MovieRentalBO.java 22

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

2

JFlix – A Movie Rental Application

Introduction

This article describes the architecture, design, and implementation details of JFlix, a web-based movie
rental application. The purpose of this article is to show how an efficient and versatile Object-
Relational Mapping (OR-Mapping) product like JDX from Software Tree can simplify the complex and
time-consuming task of integrating object-oriented POJO (Plain Old Java Object) data with relational
data.

The JFlix application facilitates the typical activities of a staff member working at a movie rental store
counter. Using this application, a staff member can check-in, checkout, and check the availability of
requested movies. The application can also be used to search for a movie based on movie name or
actor name.

This article will be useful for Java developers in general and for web application developers in
particular. Some familiarity with Struts and OR-Mapping frameworks will be helpful, although not
necessary.

Figure 1: JFlix Welcome Page

JFlix is a Struts-based web application, which implements MVC (Model-View-Controller) architecture.
Java Server Pages (JSP) are used to render view; a start-up servlet, action forms, and action classes
act as controller; and business objects control the application logic and communicate with a relational
database using JDX OR-Mapper for data integration. The application uses the schema and data of

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

3

JFlix – A Movie Rental Application

MySQL’s sample database, Sakila. This article describes the use of the Tomcat web server but any
other Java web server or application server can be used to run JFlix.

This application demonstrates the advantages of using JDX OR-Mapping middleware product for data
integration. Adhering to some well thought-out KISS (Keep It Simple and Straight-forward) principles
(see Reference [4]), JDX improves developer productivity significantly by presenting an intuitive,
object-oriented view of the relational data. The business logic layer uses JDX APIs to communicate
with the relational database to persist domain model objects (POJO). The same domain model objects
are used for both the business logic tier and the presentation tier, eliminating the need for separate
data transfer objects (DTO). Thus, the use of JDX not only simplifies the architecture, but also
provides modularity and flexibility to the business logic layer. Similar code written in JDBC and
standard SQL would be a lot more cumbersome, error-prone, and difficult to maintain.

Before we delve deep into the implementation of the application, let us first describe the database
schema and the domain model used in this application followed by a brief overview of some basic
JDX OR-Mapping concepts.

Database Schema

As mentioned before, we are using the existing schema and data provided by Sakila, the MySQL
sample database,. Although the original schema has many tables, for the purposes of this application,
we are using only the following subset of the tables:

• actor
• address
• category
• city
• country
• customer
• film
• film_actor
• film_category
• inventory
• rental
• staff
• store

Additionally, we have defined the view STOREWITHADDR to simplify some parts of the application:

CREATE VIEW STOREWITHADDR AS SELECT store_id, address, address2, district,
city, postal_code, phone FROM store, city, address WHERE
store.address_id = address.address_id AND address.city_id =
city.city_id;

Code Fragment 1: SQL Statement to Create STOREWITHADDR View

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

4

JFlix – A Movie Rental Application

Domain Model

The domain model below depicts all the business object (POJO) classes for the JFlix application.
These classes belong to the package movierental.

+film_id : Short
+title : String
+description : String
+release_year : Date
+return_date : Date
+length : Short

Film

-last_name : String
-first_name : String
-films : Vector

Actor

-inventory_id : Short
-film_id : Short
-store_id : Short
-in_stock : Boolean

Inventory

-store_id : Short
-address_id : Short
-manager_staff_id : Short
-stafflist : Vector
-inventory : Vector

Store

-first_name : String
-last_name : String
-username : String
-password : String
-address_id : Short
-store_id : Short

Staff
-rental_id : Short
-inventory_id : Short
-customer_id : Short
-staff_id : Short
-return_date : Date
-return_date : Date

Rental

-customer_id : Short
-last_name : String
-first_name : String
-address_id : Short
-store_id : Short

Customer

-address_id : Short
-address : String
-address2 : String
-city_id : Short
-postal_code : String
-phone : String

Address

-city_id : Short
-city : String
-country_id : Short

City

-country_id : Short
-country : String
-cities : Vector

Country

-category_id : Short
-name : String
-films : Vector

Category

* ***

1

*

*

*

1*

*

1

1

*
*

1

1

*

* 1

* 1

1

1

1

*

*

Figure 2: Domain Model

The above domain model shows all the attributes of the classes and the multiplicity between different
classes. For example,

• Classes Film and Actor have a many-to-many relationship between them, i.e., a movie can
have many actors in it and an actor can act in multiple movies.

• Classes Inventory and Store have a one-to-many relationship between them, i.e., a store can
have multiple copies of a movie (inventory) but an inventory item can belong to only one
store.

• Classes Store and Address have a one-to-one relationship between them. A store can have
only one address and an address can correspond to only one store.

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

5

JFlix – A Movie Rental Application

JDX OR-Mapper Concepts

Following are some important JDX concepts relevant to better understand the data integration layer of
this application:

Object-Relational Mapping File (ORMFile)

An object-relational mapping (OR-Mapping) specification contains mapping information for all the
persistent classes belonging to an application domain. The specification includes, among other things,
table names, primary key attributes, and object relationships. JDX provides an innovative, declarative
way of specifying human-readable and user-friendly object-relational mapping information based on a
simple grammar. A text file (ORMFile) containing this mapping specification can be generated using a
text editor, JDXStudio, a modeling tool, or even programmatically.

A mapping specification can correspond to only one database. While a mapping specification cannot
span multiple databases, multiple mapping specifications can be defined for the same database.

Mapping Unit

A mapping specification (identified by an ORMFile) defines a mapping unit such that all interactions
corresponding to the mapped classes and sequences in that specification share the same transaction
manager and pool of database connections. Multiple threads of an application may share a mapping
unit. An application can work with multiple mapping units.

JXResource

A JXResource provides the facilities to work with a mapping unit. A JXResource contains handles for
JXSession and JDXS objects. JXSession provides transactional methods (like tx_begin and
tx_commit) and JDXS provides, among other things, methods (like query, insert, update, and delete)
to store and retrieve domain model objects.

JXResourcePool

A JXResourcePool provides a pool of JXResource(s) for a particular mapping unit based on an OR-
Mapping specification. A JXResourcePool allows you to create multiple JXResource components in
an extensible pool and provides you with methods for thread-safe sharing of these components. For
each object-relational mapping file, there is a corresponding mapping unit and a JXResourcePool.

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

6

JFlix – A Movie Rental Application

JFlix OR-Mapping File (jflix.jdx)

The JFlix OR-Mapping file, jflix.jdx, is reversed engineered from the existing Sakila database using the
JDXStudio GUI tool. An excerpt of the mapping specification is shown in Appendix C. As you can
see, the mapping specification is based on a simple grammar and is easy to create, modify, and
comprehend. There are no XML complexities. A lot of the mapping information can be derived by
JDX using intelligent defaults (for example, table names, column names, data types, and nullability).
Some of the keywords used in the mapping file are explained below:

• CLASS specification encapsulates all the Object-Relational Mapping information for one class.

The class name may include a namespace (e.g., movierental.Film).

• PRIMARY_KEY specification identifies the attribute (property) names whose combined values

uniquely identify a particular object.

• SQLMAP specification allows one to refine the mapping of a class attribute to the SQL column in

one of the following ways:
o Using a column name different from the attribute name,
o Using an SQL data type different from the default SQL data type for the attribute type,

and
o Allowing the column to be nullable (default is not nullable).

• COLLECTION_CLASS specification encapsulates all the Object-Relational Mapping information
about a collection class. A collection is actually a pseudo-class; there may not be an actual class
by that name in the program.

• PRIMARY_KEY specification for a collection class specifies names of those attributes whose

values are the same for all the objects in a collection.

• RELATIONSHIP specification defines the mapping for a complex attribute referencing an object

or a collection of objects. It keeps the application developer from worrying about explicitly
initializing the "primary or foreign key" attribute values. BYVALUE keyword is used to indicate that,
by default, the related objects should also be inserted, updated, or deleted with the containing
object (CASCADE semantics).

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

7

JFlix – A Movie Rental Application

JFlix Use Cases
The JFlix application facilitates the typical activities of a staff member working at a movie rental store
counter. The following use cases are implemented in this application:

Use Case Description Assumptions/Limitations

Login/Logout

A staff member can login to the application
using his/her username and password. The
username and store location is saved for the
session and is displayed on all pages until
he/she logs out.

Search Movie

A staff member can list all the movies, or
search for a movie based on the name of the
movie entered in full or in part. If multiple
movies exist in the inventory matching the
search criteria, all those movies are displayed.
Clicking on the corresponding “Details” tab
shows the details of a particular movie.

Search Movie
By Actor
Name

Staff member can list all the actors in the
database, or can search a movie based on
the name of the actor entered in full or in part.
If multiple actors exist in the database
matching the search criteria, all those actors
are displayed. Clicking on the corresponding
“Movies” tab shows a list of movies for that
particular actor.

Check
Availability

A staff member can check the availability of a
movie by entering its name. The result shows
the details for that movie and number of
copies available in the inventory of that store.

Check Out

A Staff member can check out movies based
on the inventory ids of the movies and a
customer id.

Limitation: The UI currently
limits checkout of maximum of
five movies at a time.
Assumption: The customer
physically brings the movies to
the counter.

Check In

A Staff member can check in movies based
on the inventory ids of the movies and a
customer id.

Limitation: The UI currently
limits check-in of maximum of
five movies at a time.
Assumptions: The customer
returns the movies at the same
store location from where
he/she has rented those
movies. Also, the customer
physically brings the movies to
the counter.

Table 1: JFlix Use Cases

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

8

JFlix – A Movie Rental Application

JFlix Architecture and Implementation

This section describes the architecture and implementation of the JFlix application in detail. An
application server (e.g. TOMCAT) is required to deploy the application war file and run the project.
Once the war file is deployed you need to restart the application server in order to run the project. This
is not needed if your application server uses hot deploy. Following are the different
frameworks/software used in the project:

• JDX OR-Mapper – Version 4.7
• Struts – Version 1.2.9
• Struts-Layout - Version 2.0
• The Tomcat 4.1.x Servlet/JSP Container
• MySQL Server 5.0
• Sample Database Sakila – Version 0.8

The application is invoked by using the following URL in a web browser:
http://<host>:<portnumber>/MovieRental. The host name and port number should be changed based
on the configuration.

Application Control Flow

As mentioned before, JFlix uses the Struts framework based on the MVC (Model View Controller)
pattern. Java Server Pages (JSP) are used to render view; the start-up servlets, action forms, and
action classes act as controller; and the action classes communicate with the model component
consisting of business objects and domain model objects to execute application logic. Business
objects communicate with a relational database using JDX OR-Mapper, which provides data
integration for domain model (POJO) objects with relational data. The figure below explains the
control flow for the application:

JDX RDBMS

Figure 3: MVC Architecture (See Reference [1])

Now we will discuss the database tier, the presentation tier, and the business logic tier.

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

9

http://%3Chost%3E:%3Cportnumber%3E/MovieRental

JFlix – A Movie Rental Application

Database Tier

The implementation requires the MySQL sample database, Sakila, which can be downloaded from the
following link: http://forge.mysql.com/wiki/SakilaSampleDB

The Sakila download contains two files:
• sakila-schema.sql : script to create schema (16 tables and 8 views)
• sakila-data.sql : script to populate data

The file viewsforjdx.sql is added for the purpose of this project to create an extra view
STOREWITHADDRESS as described earlier.

If you already have the Sakila database installed on your machine, just add the extra view definition in
the database as per the viewsforjdx.sql script.

Also, in the inventory table, add a Boolean field "in_stock" with a default value of true. Use the
following command:

ALTER table inventory ADD in_stock BOOLEAN DEFAULT true;

Code Fragment 2: SQL statement to add in_stock field in inventory table

Presentation Tier

The presentation tier or the view component of application mainly comprises of JSP files.
The view components employed in JFlix application are:
• HTML
• Java server pages
• Custom tags
• Layout tags
• Java resource bundles

Struts provide a large number of JSP Custom Tags also called as Struts Tags. JFlix also uses Layout
tags in combination with Struts tags, which extend the normal capabilities of JSP and simplify the
development of view component.

Other than the Struts framework JSP files used in the application workflow (see Table [2]), some JSP
files are used entirely for the purpose of display and navigation. These files are header.jsp, footer.jsp,
and menu.jsp.

Start-up Servlets

Other than the standard struts action servlet, the web configuration file web.xml specifies the start-up
servlet InitMovieRentalServlet to initialize the JXResourcePool. As soon as the web server is started,
the servlet engine calls the init() method of the InitMovieRentalServlet class. This method initializes
the JXResourcePool and registers it with a configured name (ORMPoolName), such that other

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

10

http://forge.mysql.com/wiki/SakilaSampleDB

JFlix – A Movie Rental Application

modules can lookup and share this pool of JXResources using the configured name. The name of the
pool and other parameters are provided through the <init-param> elements for this servlet in web.xml
(see Appendix A).

Configuration File

The Struts application framework uses struts-config.xml (see Appendix B) as configuration file to
initialize its own resources. These resources include:

• Action Forms: to collect user inputs
• Action Mappings: to direct input to server side Actions
• Action Forwards: to select output pages

Struts Framework Files and Work Flow

The following table summarizes different artifacts of the JFlix application interacting with each other to
execute different use cases. In a following section, a particular use case (Movie Check Out) is
described in more detail:

Use Case

JSP

Action Form

Action

Business
Logic API (see
Appendix D)

Screen Shots
(click for
details)

Login

/Logout

login.jsp

logout.jsp

UserForm

LoginAction

getObjects

Search
Movie

searchFilm.jsp

filmList.jsp
filmDetails.jsp

noFilmsFound.jsp

FilmForm

FilmAction

FilmDetailsAction

getObjects

GetObjectById

Check

Availability

checkAvailability.jsp

notAvailable.jsp

FilmForm

CheckAvailabilityAction

getObjectCount

Search

Movie By
Actor Name

byActorSearch.jsp

actorList.jsp
actorDetails.jsp

noActorsFound.jsp

ActorForm

ActorAction

ActorDetailsAction

getObjects

getObjectById

Check Out

checkOut.jsp

checkOutSuccess.jsp

RentalForm

CheckOutAction

checkOutFilms

Check In

checkIn.jsp
checkInSuccess.jsp

RentalForm

CheckInAction

checkInFilms

Table 2: Struts Framework Files and Work Flow

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

11

JFlix – A Movie Rental Application

Some files are used as global forwards, which are accessible from all the pages. For example,

• welcome.jsp
• login.jsp and logout.jsp
• menu.jsp
• error.jsp

Properties File

MessageResources.properties file is used to display messages to the user. It is stored in an
application’s WEB-INF/classes folder and is specified in struts-config.xml. At run-time, it helps replace
portions of a message string with arguments specified at run time.

Business Logic Tier

The business logic is implemented in the business object class MovieRentalBOImpl, which
implements the MovieRentalBO interface. MovieRentalBOImpl works as a stateless singleton
business object and is responsible for data access and storage of various domain model objects
(POJOs), using the JDX OR-Mapper methods. To make the application thread-safe, eager
instantiation of the singleton business object is done. The static method getInstance() return the same
previously initialized instance.

public class MovieRentalBOImpl implements MovieRentalBO {
 private static JXResourcePool jxResourcePool_ = null;
 // Eager instantiation of Singleton movieRentalBoImplInstance_
 private static MovieRentalBOImpl movieRentalBoImplInstance_ = new MovieRentalBOImpl();

 // private constructor
 private MovieRentalBOImpl () {
 jxResourcePool_ = InitMovieRentalServlet.getJXResourcePool();
 }

 public static MovieRentalBOImpl getInstance() throws Exception {
 if (jxResourcePool_ == null) {
 throw new Exception(". . . ");
 }
 return movieRentalBoImplInstance_;
 }
 ////// other methods ///////
}

Code Fragment 3: MovieRentalBOImpl Class in Singleton Pattern

As discussed earlier, the JXResourcePool is initialized by the start-up servlet when the web server
engine is started. This resource pool helps create multiple JXResource handles and provides methods
to share these handles in a thread-safe way.

The method checkoutJXResource() provided in the business object (MovieRentalBOImpl) gets a free
JXResource from the pre-initialized pool of JXResources:

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

12

JFlix – A Movie Rental Application

private JXResource checkoutJXResource() throws Exception {

JXResource jxResource = (JXResource) jxResourcePool_.getResource();
 if (jxResource == null) {
 throw new Exception ("JXResources exhausted.");
 }
 return jxResource;
}

Code Fragment 4: Method checkOutJXResource() (File: MovieRentalBOImpl.java)

Similarly, the method checkinJXResource() releases a JXResource back into the pool:

private void checkinJXResource(JXResource jxResource) {

if (jxResource != null) {
 jxResourcePool_.releaseResource(jxResource);
 }
 }

Code Fragment 5: Method checkinJXResource() (File: MovieRentalBOImpl.java)

Other methods in the MovieRentalBOImpl class are for data access and storage to execute part of the
business logic (see Appendix D). Some methods are generalized (e.g., getObjects, getObjectById)
while others are application specific (e.g., checkOutFilms, checkInFilms). All methods have the
following pattern:

• Checkout JXResource, get the JXSession handle (for transactional methods) and the JDXS

handle (for methods like query, insert, update, delete, etc.),
• Optionally start a transaction
• Use JDX APIs to interact with the database
• Commit the transaction, if started earlier, and
• Check-in JXResource.

Here is an example:

public Object getObjectById(. . . .) throws Exception {

 JXResource jxResource = checkoutJXResource();
 JXSession jxSessionHandle = jxResource.getJXSessionHandle();
 JDXS jdxHandle = jxResource.getJDXHandle();

 try {
 // Using jdxHandle, retrieve an object based on its id…
 }
 catch (Exception ex) {
 // Throw exception
 }
 finally {
 checkinJXResource(jxResource);
 }
 return object;
}

Code Fragment 6: Method getObjectById() (File: MovieRentalBOImpl.java)

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

13

JFlix – A Movie Rental Application

Movie Check Out: Use Case Details

This section describes the entire process of checking out movies.

The user interface starts with the checkOut.jsp page displaying the form to enter inventory ids of the
movies to be checked out, and the customer id. As per the current UI design, a maximum of five
movies can be checked out at one time, although that number is not a technical limitation.

Figure 4: Check Out Form

After the user enters inventory ids and customer id and hits the “Check Out” button, the struts
framework invokes the execute() method of the CheckOutAction class with the user input
encapsulated in the request parameter:

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

14

JFlix – A Movie Rental Application

<layout:submit reqCode=”/checkOut.do”

onclick=”document.forms[0].opCOdeOut.value=’checkOut’”>
<layout:message key=”Check Out”/>

</layout:submit>

Code Fragment 7: Code for Check Out Button from (File: checkOut.jsp)

<action>
 path=”/checkOut”
 type=”movierental.action.CheckOutAction”
 name=”RentalForm”
 scope=”request”
 input=”/error.jsp”>

 <forward name=”checkedOut” path=”/checkOutSuccess.jsp”/>
</action>

Code Fragment 8: Code for ‘checkOut’ action forwards and mapping (File: struts-config.xml)

Within the execute() method of the CheckOutAction class, the method checkOutFilms() of the
MovieRentalBO interface is invoked by passing inventory ids, customer id, and staff member id, as
parameters. CheckOutFilms() method returns a list of movies successfully checked out by
MovieRentalBOImpl class.

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception, ServletException {
 . . .

// get the singleton instance of MovieRentalBOImpl
MovieRentalBO movierentalbo = MovieRentalBOImpl.getInstance();

Vectors films = movierentalbo.checkOutFilms(invIds, customerId, staff_Id);
request.setAttribute("moviesCheckedOut", films);

 return (mapping.findForward("checkedOut"));

. . .
}

Code Fragment 9: Code from action method execute() (File: CheckOutAction.java)

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

15

JFlix – A Movie Rental Application

As shown in the code fragment below, the checkOutFilms() method of the MovieRentalBOImpl class
executes the following business logic:

• Checkout JXResource
• Start a transaction
• Check validity of inventory ids and customer id
• For each inventory ID, invoke JDX insert method to insert a new record in the rental table
• Invoke JDX update2 method to update the inventory table by setting the value of the in_stock

column to false for all the rows corresponding to the given inventory ids.
• Get the list of checked out movies
• Commit the transaction
• Return the list of checked out movies to the execute() method in action class.

public Vector checkOutFilms(ArrayList inventory_ids, short customer_id,
 short staff_id) throws Exception {

 JXResource jxResource = checkoutJXResource();
 JXSession jxSesSsionHandle = jxResource.getJXSessionHandle();
 JDXS jdxHandle = jxResource.getJDXHandle();

 String invPredicate = validateCheckInCheckOutParameters
 (inventory_ids, customer_id, jdxHandle);
 jxSessionHandle.tx_begin();
 Vector films = null; // List of successfully checked out films
 try {
 int countIds = inventory_ids.size();
 Short inv_id;

 // Do the checkout processing
 // First create and insert new Rental objects for each inventory item
 Timestamp ts = new Timestamp((new java.util.Date()).getTime());
 for (int i = 0; i < inventory_ids.size(); i++) {
 inv_id = (Short) inventory_ids.get(i);
 Rental rental = new Rental(ts, inv_id, customer_id, staff_id);
 jdxHandle.insert(rental, JDXS.FLAG_SHALLOW, null);
 }

 // Update in_stock value of all the inventory items to false
 String invStockPredicate = invPredicate + " AND in_stock=1";
 int count = updateInventoryStatus(invStockPredicate, false, jdxHandle);
 if (count < countIds) {

throw new Exception((countIds-count)+ "Inventory Id(s) out of stock.”);
 }

 // Now get the vector of the checked out films to be returned
 // back to the caller
 films = getFilmsForInventoryIds(invPredicate, countIds, jdxHandle);
 jxSessionHandle.tx_commit();
 } catch (Exception ex) {
 jxSessionHandle.tx_rollback();
 throw ex;
 }
 finally {
 checkinJXResource(jxResource);
 }
 return films;
}

Code Fragment 10: Code from method checkOutFilms() (file: MovieRentalBOImpl.java)

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

16

JFlix – A Movie Rental Application

The getFilmsForInventoryIds() method first retrieves the list of inventory objects corresponding to the
checked-out or checked-in inventory items. Then, employing the getObjectById() method, it retrieves
the film objects one-by-one for each of the inventory objects using the corresponding film_id value.

static private Vector getFilmsForInventoryIds(String inventoryPredicate, int
 countIds, JDXS jdxHandle) throws Exception {

 // First get the list of inventory items to get the film ids
 Vector InventoryList = jdxHandle.query("movierental.Inventory",
 inventoryPredicate, countIds, JDXS.FLAG_SHALLOW, null);
 // Now retrieve the films
 Inventory inventory;
 Vector films = new Vector();
 Object film = null;

 for (int i = 0; i < InventoryList.size(); i++) {
 inventory = (Inventory) InventoryList.elementAt(i);
 short filmId = inventory.getFilm_id();
 Object id = ObjectId.createObjectId("movierental.Film;film_id="+filmId);
 film = jdxHandle.getObjectById (id, true, JDXS.FLAG_SHALLOW, null);
 films.add(film);
 }
 return films;
}

Code Fragment 11: Code from method getFilmsForInventoryIds() (File: MovieRentalBOImlp.java)

Finally, the execute() method initializes the request context with movie list and passes control to
checkOutSuccess.jsp using the action forward “checkedOut”. The page displays names of the movies
checked out and their return dates.

Figure 5: Check Out Success Screen

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

17

JFlix – A Movie Rental Application

Summary

The JFlix movie rental application demonstrates how JDX OR-Mapper can be used in combination
with the Struts framework to develop a sophisticated web-application. This application also
demonstrates that JDX can easily work with an existing database schema like MySQL Sakila. JDX
provides an efficient way of communication between a Java object model (POJO) and a SQL
relational model. This approach also eliminates the need to create separate Data Transfer Objects
(DTOs) for each domain model object for passing data between the presentation tier and the business
logic tier.

Exploiting JDX’s intuitive, flexible, and powerful APIs, makes the business logic code simple, concise,
and easy to maintain The same logic, if implemented using JDBC, would be much more complex,
error-prone, and difficult to maintain. Using JXResourcePool facility makes it very easy to efficiently
share the underlying mapping and database resources in a thread-safe manner. All in all, JDX OR-
Mapper improves developer productivity and helps create high-performance applications quickly.

JFlix Movie Rental application is shipped with JDX OR-Mapper software. A free evaluation version of
JDX is available from Software Tree’s web site at http://www.softwaretree.com.

Acknowledgements

I would like to thank Mr. Damodar Periwal, the architect of JDX, for his valuable guidance and help
throughout the design and implementation of this application. I would also like to thank Mr. Nikhil
Samdani for reviewing this article and offering valuable feedback to improve the contents and the
presentation of the material.

References

1. MVC Application Control Flow Diagram: http://www.matthiasbook.de/papers/dialogcontrol-

it2002/2.html

2. Software Tree Website: www.softwaretree.com

3. Beyond JDBC: A White Paper:

http://www.softwaretree.com/products/jdx/whitepaper/BeyondJDBC.pdf

4. The KISS Principles for OR-Mapping Products: A White Paper:

http://www.softwaretree.com/products/njdx/whitepaper/KISSPrinciples.pdf

Trademarks

JDX, “The KISS OR-Mapper”, and JFlix are trademarks of Software Tree. Java is a registered
trademark of Sun Microsystems. All other marks are the property of their respective owners.

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

18

http://www.matthiasbook.de/papers/dialogcontrol-it2002/2.html
http://www.matthiasbook.de/papers/dialogcontrol-it2002/2.html
http://www.softwaretree.com/
http://www.softwaretree.com/products/jdx/whitepaper/BeyondJDBC.pdf
http://www.softwaretree.com/products/njdx/whitepaper/KISSPrinciples.pdf

JFlix – A Movie Rental Application

Appendix

Appendix A: Start-up Servlet web.xml

Here is an excerpt from web.xml to show start-up servlet configuration for the application. One is the
standard struts action servlet and the other one (MovieRentalStartupServlet) is the servlet for
JXResourcePool initialization:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <!-- Standard Action Servlet Definition -->

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <!-- Start-up servlet definition for JDX -->
 <servlet>
 <servlet-name>MovieRentalStartupServlet</servlet-name>
 <servlet-class>movierental.InitMovieRentalServlet</servlet-class>
 <init-param>
 <param-name>ORMPoolName</param-name>
 <param-value>movierentalORMPool</param-value>
 </init-param>
 <init-param>
 <param-name>JDBCDriver</param-name>
 <param-value>com.mysql.jdbc.Driver</param-value>
 </init-param>
 <init-param>
 <param-name>ServiceURL</param-name>
 <param-value>

JDX:jdbc:mysql://localhost/sakila;user=root;JDX_ORMFile=jflix.jdx;JDX_FINE_CO
NN_POOLING=YES; JDX_DBTYPE=MYSQL;DEBUG_LEVEL=5</param-value>

 </init-param>
 <init-param>
 <param-name>JDX_ORMFILE</param-name>
 <param-value>/WEB-INF/classes/jflix.jdx</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

<!-- Standard Action Servlet Mapping -->
<servlet-mapping>
 <servlet-name>MovieRentalStartupServlet</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>
</web-app>

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

19

JFlix – A Movie Rental Application

Appendix B: Struts Configuration File struts-config.xml

This is an excerpt from struts-config.xml showing form-bean and action-mapping specifications for the
check out films use case:

<!-- ======================================= Form Bean Definitions -->

 <form-beans>
 <form-bean name="RentalForm"
 type="movierental.actionform.RentalForm"/>
 </form-beans>

<!-- ==================================== Action Mapping Definitions -->

 <action-mappings>

<action
 path="/checkOut"
 type="movierental.action.CheckOutAction"
 name="RentalForm"
 scope="request"
 input="/error.jsp">

 <forward name="checkOut" path="/checkOut.jsp"/>
 <forward name="checkedOut" path="/checkOutSuccess.jsp"/>
 <forward name="filmNotAvailable" path="/notAvailable.jsp"/>
</action>

 </action-mappings>

</struts-config>

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

20

JFlix – A Movie Rental Application

Appendix C: ORMFIle jflix.jdx

This is an excerpt from jflix.jdx showing OR-Mapping specifications for the classes used in the Check
Out films use case. Please note that the SQLMAP specification needs to be done for only those
attributes whose corresponding columns are nullable. If all the columns had been non-nullable (a
default assumed by JDX), the mapping specification would have become more compact.

CLASS movierental.Film TABLE film
 PRIMARY_KEY film_id
 RELATIONSHIP actors REFERENCES VectorActors WITH film_id
 RELATIONSHIP categories REFERENCES VectorCategory WITH film_id
 RELATIONSHIP inventory REFERENCES VectorInventory WITH film_id
 SQLMAP FOR release_year NULLABLE
 SQLMAP FOR original_language_id NULLABLE
 SQLMAP FOR length NULLABLE
 SQLMAP FOR rating NULLABLE
 SQLMAP FOR last_update NULLABLE
 SQLMAP FOR description NULLABLE
 SQLMAP FOR special_features NULLABLE
;
CLASS movierental.Inventory TABLE inventory
 PRIMARY_KEY inventory_id
 SQLMAP FOR last_update NULLABLE
;
COLLECTION_CLASS VectorInventory COLLECTION_TYPE VECTOR ELEMENT_CLASS

movierental.Inventory ELEMENT_TABLE inventory
 PRIMARY_KEY film_id
;
CLASS movierental.Customer TABLE customer
 PRIMARY_KEY customer_id
 SQLMAP FOR last_update NULLABLE
 SQLMAP FOR email NULLABLE
 RELATIONSHIP store REFERENCES movierental.Store WITH store_id
;
CLASS movierental.Staff TABLE staff
 PRIMARY_KEY staff_id
 SQLMAP FOR last_update NULLABLE
 SQLMAP FOR picture NULLABLE
 SQLMAP FOR email NULLABLE
 SQLMAP FOR password NULLABLE
;
CLASS movierental.Rental TABLE rental
 PRIMARY_KEY rental_id
 RDBMS_GENERATED rental_id last_update
;

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

21

JFlix – A Movie Rental Application

Appendix D: Business Logic Layer Methods in MovieRentalBO.java

Here are the signatures of the main methods of the business logic layer interface (MovieRentalBO)
that uses JDX for data access and storage of domain model objects.

public interface MovieRentalBO {

 /**
 * Method getObjects() takes className, predicate, numOfObj, and deep as input
 * and returns a vector list of all the qualifying objects of the given class
 * from the database. If deep parameter is true, all the related objects are
 * also fetched.
 **/
 public Vector getObjects(String className, String predicate, long numOfObj,
 boolean deep, Vector details) throws Exception;

 /**
 * Method getObjectById() takes className and a primary key predicate in the
 * form of pkey1=val1[;pkey2=val2]) as input and returns the qualifying
 * object from the database. It returns null if no qualifying object is found.
 * If deep parameter is true, all the related objects are also fetched.
 **/

 public Object getObjectById(String className, String primaryKeyPredicate,
 boolean deep, Vector details) throws Exception;

 /**

 * Method getObjectCount() takes className, attrib, predicate, and deep as
 * input and returns the number of qualifying objects of the given class.

 **/
 public int getObjectCount(String className, String attrib, String predicate,
 boolean deep) throws Exception;

 /**

 * Method checkOutFilms() checks out a set of movies. It takes as input a vector
 * of movie inventory ids, a customer id, and a store clerk id. It inserts a
 * new Rental object for each checked out movie and sets the in_stock value to
 * false for the appropriate inventory objects.

 **/
 public Vector checkOutFilms(ArrayList inventory_ids, short customer_id,
 short staff_id) throws Exception;

 /**

 * Method checkInFilms() checks in a set of movies. It takes as input a vector
 * of inventory ids of the movies to be checked in and a customer id. It
 * updates the Rental object (sets return_date to today) for each of the
 * checked in movie and sets the in_stock value to true for the appropriate
 * inventory object.

 **/
 public Vector checkInFilms(ArrayList inventory_ids, short customer_id)
 throws Exception;

}

Copyright © 2006-2007 Software Tree, Inc. All rights reserved

22

	Smita Joshi
	Abstract
	Table Of Contents

	 Introduction
	Database Schema
	 Domain Model
	JDX OR-Mapper Concepts
	Object-Relational Mapping File (ORMFile)
	Mapping Unit
	JXResource
	JXResourcePool

	 JFlix OR-Mapping File (jflix.jdx)
	 JFlix Use Cases
	Use Case
	Login/Logout

	JFlix Architecture and Implementation
	Application Control Flow
	 Database Tier
	Presentation Tier
	Start-up Servlets
	Configuration File

	Struts Framework Files and Work Flow
	JSP
	Properties File

	Business Logic Tier
	 Movie Check Out: Use Case Details

	Summary
	Acknowledgements
	References
	Trademarks
	 Appendix
	Appendix A: Start-up Servlet web.xml
	Appendix B: Struts Configuration File struts-config.xml
	Appendix C: ORMFIle jflix.jdx
	 Appendix D: Business Logic Layer Methods in MovieRentalBO.java

