

Remodeling

with

A Project Report

By

Prajakta Bahekar
Renu Kolli

Neelima Sangeneni

February 7, 2006

ABSTRACT
The .NET Pet Shop application is designed to show the .NET best practices for building
enterprise n-tier applications. In this ASP.NET based web application, classes are defined to
represent domain model objects like products, users, addresses, and orders. These domain
model objects are persisted in relational databases (e.g., SQL Server, Oracle) using a data
access layer (DAL). The current DAL implementation, which uses raw SQL and low-level
database APIs, is pretty hard to understand and maintain. This report describes how such a
data access layer can be replaced with a much simpler and shorter (35% less lines of code)
implementation using NJDX OR-Mapping technology from Software Tree. In addition to greatly
simplifying the architecture, the NJDX approach provides greater flexibility and delivers
superb performance.

©2005-2006 Software Tree, Inc., All right reserved

Table of Contents

Introduction ...3

NJDX OR-Mapper Concepts ...5

Object-Relational Mapping File (ORMFile) ...5
Mapping Unit ...5
Domain Model Assembly (DM_ASSEMBLY)...5
JXResource ..5
JXResourcePool ..5

Mapping Design...6

DAL Implementation using NJDX ..7

OR-Mapping files (petshop.jdx and petshop_orders.jdx)..7
Utility classes (NJDXHandlers, Petshop_NJDXHandlers and
Petshop_Orders_NJDXHandlers)...7
PetShop.NJDXDAL project ...7

Summary..10

Acknowledgements...10

References...10

Appendix A ..11

PetShop.SQLServerDAL.Order.cs (234 lines of program code)..................................11
PetShop.NJDXDAL.Order.cs (68 lines of program code) ...15

©2005-2006 Software Tree, Inc., All right reserved

Introduction

The .NET Pet Shop application is now in its third revision and is designed to show the .NET best
practices for building enterprise n-tier applications, which may need to support a variety of
database platforms and deployment models. This report documents how we remodeled the
current Pet Shop application using Software Tree’s NJDX Object-Relational Mapper (OR-Mapper)
product and outlines the advantages of this approach.

Figure 1. .NET Pet Shop Welcome Page

The original application consists of a Web tier built with ASP.NET Web Forms which uses "code-
behind" to separate the application HTML from the user interface code. Classes are defined to
represent domain model objects like products, users, addresses, and orders. The middle tier
contains business components to control the application logic, which communicates with a
relational database through a data access layer (DAL) to persist domain model objects. The
current DAL implementation uses raw SQL and low-level database APIs to perform the data
exchange for the domain model objects with relational databases. This implementation is difficult
to understand, modify, and maintain. For more details on the Pet Shop application, please check
here.

Figure 2. .NET Pet Shop high-level logical architecture

©2005-2006 Software Tree, Inc., All right reserved

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/petshop3x.asp

NJDX, the KISS OR-Mapper™ for .NET, seamlessly bridges the gap between the .NET object
model and SQL relational model. NJDX employs a clean, dynamic, and meta-data driven
programming methodology supporting pure domain object models, resulting in applications that
are simpler and faster to develop, and easier to modify and maintain. For more details on NJDX,
click here.

We were put to the challenge of hosting the original Pet Shop 3.0 application over NJDX OR-
Mapper without making any changes to the existing object model, database schema, or client
code. Essentially our job was to create a new NJDX-based data access layer (DAL) that would
cleanly replace the old (SQLServer) DAL layer without affecting any other parts of the program or
the database.

NJDXDAL NJDX ORM

Figure 3. .NET Pet Shop 3.0 application architecture

Our project involved creating a DAL (NJDXDAL) that uses

NJDX OR-Mapper for data access

After analyzing the current implementation and the requirements, we divided our project in two
parts:

1- Mapping Design
2- DAL Implementation using NJDX

Before describing the details of the implementation, we will outline some basic NJDX OR-Mapper
concepts. Then we will present an overview of the Mapping Design, and an outline of a DAL
implementation using NJDX.

The report concludes with the advantages of the new NJDX-based architecture and an appendix
that shows an example of the dramatic reduction in the size and complexity of the data access
code.

©2005-2006 Software Tree, Inc., All right reserved

http://www.softwaretree.com/NJDX_index.htm

NJDX OR-Mapper Concepts

Here we describe a few concepts of the NJDX OR-Mapper to help understand our project and
this report better.

Object-Relational Mapping File (ORMFile)

An object-relational mapping (OR-Mapping) specification contains mapping information for all the
persistent classes belonging to an application domain. The specification includes, among other
things, table names, primary key attributes and object relationships. NJDX provides an
innovative declarative way of specifying human-readable and user-friendly object-relational
mapping information based on a simple grammar. A text file (ORMFile) containing this mapping
specification can be generated using a text editor, NJDXStudio, a modeling tool, or even
programmatically.

A mapping specification can correspond to only one database. While a mapping specification
cannot span multiple databases, multiple mapping specifications can be defined for the same
database.

Mapping Unit

A mapping specification (identified by an ORMFile) defines a mapping unit such that all
interactions corresponding to the mapped classes and sequences in that specification share the
same transaction manager and pool of database connections. Multiple threads of an application
may share a mapping unit. An application can work with multiple mapping units.

Domain Model Assembly (DM_ASSEMBLY)

A domain model assembly is a unit of compiled domain model classes that are persisted using
NJDX. That is, the mapping unit classes whose mappings are defined in the mapping
specification (e.g., petshop.jdx file) are compiled and assembled in a domain model assembly
(e.g., DomainModel.dll). This domain model assembly is identified by DM_ASSEMBLY
parameter (e.g., DM_ASSEMBLY=’<Path>/PetShop.Model.dll’) in the Database URL or
JDXURL.

JXResource

A JXResource provides the facilities to work with a mapping unit. A JXResource contains
handles for JXSession and JDXS objects. JXSession provides transactional methods (like
tx_begin and tx_commit) and JDXS provides, among other things, methods (like query, insert,
update, and delete) to store and retrieve domain model objects.

JXResourcePool

A JXResourcePool provides a pool of JXResource(s) for a particular mapping unit based on an
OR-Mapping specification. A JXResourcePool allows you to create multiple JXResource
components in an extensible pool and provides you with methods for thread-safe sharing of these
components.

For each object-relational mapping file, there is a corresponding domain model assembly,
mapping unit, and JXResourcePool.

©2005-2006 Software Tree, Inc., All right reserved

Mapping Design

The Model project of the original Pet Shop application contains domain model classes for holding
data and transporting it to different tiers of the application. The data access layer (DAL) interacts
with the underlying database to exchange data with these domain model objects.

Unfortunately, the relational data model was not properly normalized, and did not correlate well
with the original object model. The existing implementation bridged discrepancies between the
object and data models by using numerous complex SQL statements incorporating complicated
joins buried inside the DAL code. Figuring out the existing mapping to satisfy the application
requirements was one of the biggest challenges.

 This is what we did as part of the Mapping Design project:

• Created some new domain model classes to facilitate clean mapping and simpler data

access logic.

• Created some new views on the existing tables to simplify the mapping of domain model

classes over the relational schema.

• Had to make two unavoidable changes to the existing domain model classes:

• Added an empty no-argument constructor to the ItemInfo class.
• Added two fields (Courier, Locale) to the OrderInfo class corresponding to two non-

NULLABLE columns in the Orders table.

• Defined object relational mapping specifications for all the domain model classes based on

existing tables and the newly created views. The original Pet Shop application deals with two
databases (Petshop, PetshopOrders). Since, as part of the remodeling requirements, we did
not want to make any changes to the existing database design, we have defined two
mapping specification files (petshop.jdx and petshop_orders.jdx.)

• Some of the special specifications within the petshop.jdx mapping file include:
• Defined a READONLY cache for the CategoryInfo class to speed up queries for its

instances.
Defined a • named query productsByCategory for the ProductInfo class to speed up
category-based queries for its instances.

• Some of the special specifications within the petshop_orders.jdx mapping file include:

• Defined a Sequence generator (ORDERID_SEQ) to easily create persistently unique

• CIT_ATTRIB OrderId for the class LineItemInfo, which automatically

 We utilized NJDXDemo GUI tool to easily modify and validate our mapping specifications

• xternalizing the object-relational mapping in a simple text file (no XML!) made it very easy to

logic.

OrderId for new OrderInfo objects. The existing implementation used an IDENTITY
column for this purpose. But assigning the same OrderId to the corresponding
LineItemInfo objects required a separate query. The new implementation simplifies the
programming logic, improves performance, and creates a database independent
implementation.
Defined an IMPLI
gets initialized by NJDX based on the OrderId of the containing OrderInfo object.

•
with existing schema and data.

E
understand and comprehend the different entities that were involved in the data exchange
and how they were related This also simplified the subsequent implementation of the DAL
layer as there was absolutely no need to hard code any SQL statements in the data access

©2005-2006 Software Tree, Inc., All right reserved

DA

Once we figured that out and externalized the object-relational mapping specification in NJDX
mapping files, the rest of the project became easy. Now we describe some of the artifacts we
created and used to implement the remodeling of the .NET Pet Shop.

OR-Mapping files (petshop.jdx and petshop_orders.jdx)

The original Pet Shop application uses 2 databases (Petshop, PetshopOrders). Since we
did not want to make any changes to the existing object model and the database design,
we have created 2 mapping specification files (petshop.jdx and
petshop_orders.jdx).

Utility classes (NJDXHandlers, Petshop_NJDXHandlers and
Petshop_Orders_NJDXHandlers)

Each method in the data access layer (DAL) module needs to work with the NJDX OR-
Mapping subsystem to execute transactional operations and data exchange for domain
model objects. To facilitate that, we created a base utility class – NJDXHandlers that
contains the variables and the logic (using a Template Method design pattern) for
checking out and checking in a JXResource from a JXResourcePool corresponding to
the underlying mapping specification. It also has utility methods to use NJDX Sequences
conveniently and efficiently.

Petshop_NJDXHandlers and Petshop_Orders_NJDXHandlers, subclasses of
NJDXHandlers, provide the actual JXResourcePools corresponding to the mapping unit
described by the files petshop.jdx and petshop_orders.jdx respectively. Each of
these two classes has a static JXResourcePool variable that is initialized during the
application startup time in the method Application_Start() of the Global.asax module.
The Application_Start() method first reads the mapping configuration parameters
(JDXURL) from the newly introduced application variables Petshop_JDXURL and
Petshop_Orders_JDXURL in the Web.config file.

PetShop.NJDXDAL project

To implement the Petshop DAL layer on top of NJDX OR-Mapper, we created a new dll
project named PetShop.NJDXDAL which uses the IDAL interfaces. This project
contains the above-mentioned classes Petshop_NJDXHandlers and
Petshop_Orders_NJDXHandlers for JXResource handling. All the original classes of
the existing (SQL Server) DAL layers have been re-implemented using NJDX. Each
such DAL class now inherits from either Petshop_NJDXHandlers or
Petshop_Orders_NJDXHandlers depending upon which mapping specification it needs
to use. Each method in the DAL class has the following code pattern:

• Check out a JXResource
• Perform data exchange and transaction operations using JXSession and JDXS

methods
• Check in the JXResource

After developing and verifying the above code pattern, it was a breeze to change all the
DAL modules to use NJDX.

L Implementation using NJDX

©2005-2006 Software Tree, Inc., All right reserved

Here is an example of how simple the
become in the NJDXDAL Order cla

 implementation of the GetOrder() method has
ss

public OrderInfo GetOrder(int orderId) {
 //Set up a return value
 OrderInfo order = null;
 try
 {
 checkoutJXResource();

tion e)

 finally

 ObjectId oid = ObjectId.createObjectId
 ("PetShop.Model.OrderInfo;_orderId="+orderId);
 order = (OrderInfo) njdxHandle.getObjectById(oid, false, 0, null);
 }
 catch (System.Excep
 {
 throw e;
 }

 {
 checkinJXResource();
 }
 return order;
}

The original SQLServer DAL implementation of the same method takes more than double
the number of lines of code which are embedded with complicated SQL statements and
verbose processing logic related to SqlDataReader. Please see Appendix A for the full
listings of the Order class corresponding to SQLServerDAL and NJDXDAL
implementations.

Figure 4. New NJDXDAL.Order.GetOrder() method – short and simple

Since the new implementation does not use any explicit SQL commands, we removed
le from the new project.

Essenti
Petsho
(injecte Start() of the
lobal.asax module. Runtime data exchange between domain model objects and relational

data ha hop.NJDXDAL modules, which in turn use
JXReso e

Rebuild after the above changes made the NJDX DAL code
perational.

the SQLHelper modu

Finally, under appSettings configuration settings in the Web.config file, we changed
the value for the keys WebDAL and OrderDAL from PetShop.SQLServer to
PetShop.NJDXDAL.

ally, JXResourcePools (in Petshop_NJDXHandlers and
p_Orders_NJDXHandlers classes) for NJDX OR-Mapping specifications are initialized
d) at the (ASP.NET) application startup time in the method Application_

G
ppens through methods in PetS
urc (s) from the pre-initialized JXResourcePool(s).

ing the Pet Shop application
o

©2005-2006 Software Tree, Inc., All right reserved

Here is
of Petsh ding to petshop_orders.jdx).

• .
• utilizing NJDX for data access.
• sents a high-level action.
• umber shows the direction of data transfer or

a high-level process flow diagram. To avoid clutter, we are not showing the initialization
op_Orders_NJDXHandlers (correspon

The yellow blocks show web and business logic tiersx
The teal blocks show the DAL tier

cle with a number repreA round cir
A call out circle (in green color) with a n
ontrol transfer corresponding to t

x
c he high-level action with the same number.

PetShop.NJDXDAL.
Petshop_NJDXHandlers.cs

<add ke RL”.. y=”Petshop_JDXU

petshop.jdWeb.config

Applica on_S
 Read
 Petshop_JDXURL;
 Initiali
 Petsh
}

ti tart() {

ze
op_NJDXHandlers;

Global.asax

1

1

2

 Initialize JXResourcePool
 with JDXURL;

2

3

 Create
 JXResourcePool

 domain objects

 Execute db query

 Create and return

N
J
D
X

O
R
-
M
A
P
P
E
R

 R
D
B
M
S

3

SQLSomeBusinessMethod() {
 Get us
 Query
 class
 Displa

er request;
 for domain objects of
 PetShop.AccountInfo;

 results; y

ASP.NET Web From

5

x
Petshop.Model.dll

4

4

JXResource {
 JXSession

SomeQueryMethod() {

 checkoutJXResource();

 checkinJXResource();

 results = JDXS.query();

 return results;
}

PetShop.NJDXDAL.Account.cs

JDXS }6 10

6

7

7

8

8

9

10

11

5

Fig 5: A Process Flow Diagram showing initializations and usage of NJDX DAL layer in

• Actions 1 to 4 show initialization of the NJDX DAL layer
• Actions 5 to 11 show the process flow in response to a query request

the .NET Pet Shop Application

Presentation and Biz Logic Tier Data Access Logic Tier ORM and Data

9

11

Tier

©2005-2006 Software Tree, Inc., All right reserved

Summary

By eliminating the complex spaghetti code involving tedious SQL statements and their elaborate
pro s more intuitive code base, and an
app ation using Software
Tre

ces ing, we have achieved a cleaner design, a smaller and
arently higher performance implementation of the .NET Pet Shop applic
e’s JDX OR-Mapper. For example, as Appendix A shows, the new im N plementation with

tion
to 6 li has

les t of all, the
new implementation can work with any backend database including SQL Server, Oracle, and IBM

B2 because NJDX provides a database agnostic OR-Mapping solution.

chieving such impressive results und nly makin changes to the DAL
icated ASP.NET applic a few at

e ower, f xibili

ject, bu J painless and enjoyable.
roject provides a de ta ac n enterp se class
SP.NET app ati can easily be devel ed usi nstrates some best
ractice exam s of using NJDX APIs.

et Shop application ships with DX OR-Ma r software. Please visit
oftware Tree’s web (http://www.softwaretree.com) for more details.

n

We want to than ar Periwal, t a d t
the project.

We would like to than Julian Keith L n r reviewing thi e g
valuable feedback to improve the contents of the material.

Figures 1, 2, and 3 have been taken a erenced paper ft .NET

NJDX shrunk the code size of the Order module from 234 lines in SQLServerDAL implementa
8 nes in NJDXDAL implementation (a 70% reduction)! Overall, the NJDXDAL layer

s lines of code (LOC) compared to the SQLServer DAL implementation. Bes35%

D

A er strict constraints of o

ation, and in a short timeframe of
ty, and ease-of-use.

g
layer of a sophist

monstration of NJDX’s p
 weeks, is a gre

d le

It was quite a challenging pro t N DX OR-Mapper made it This
p tailed example of how an efficient da cess layer of a ri
A lic

ple
on op ng NJDX. It also demo

p

The remodeled P the NJ ppe
S

Acknowledgeme ts

k Damod he rchitect of NJDX, for his guidance an help throughou

k ore , MCSD, MCAD, fo s r port and offerin

nd adapted from the first ref Microso
P a Arch ecture of the .NET Pet Shopet Shop 3.x: Design P ittterns and .

R

Microsoft .NET Pet Shop 3.x: Design Patterns and Architecture of the .NET Pet Shop

eferences

 by

(The above reference also has a link to download PetShop 3.0 installer)

Software Tree’s web site

Leake, Gregory and Duff James.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/petshop3x.asp

ht
(The above reference also has a apper product)

The K S

tp://www.softwaretree.com
 link to download the NJDX OR-M

IS Principles for ORM – A White Paper
http:/ w/ww .softwaretree.com/products/njdx/whitepaper/KISSPrinciples.pdf

©2005-2006 Software Tree, Inc., All right reserved

Appendix A

sing PetShop.Model;

tName, @BillLastName, @ShipFirstName,

tem VALUES(";

CreditCard, o.ExprDate, o.BillToFirstName, o.BillToLastName, o.BillAddr1, o.BillAddr2,
BillZip, o.BillCountry, o.ShipToFirstName, o.ShipToLastName,
 o.ShipCity, o.ShipState, o.ShipZip, o.ShipCountry,

TotalPrice, l.ItemId, l.LineNum, l.Quantity, l.UnitPrice FROM Orders as o, lineitem as

ate const string PARM_DATE = "@Date";
private const string PARM_SHIP_ADDRESS1 = "@ShipAddress1";

te";
private const string PARM_SHIP_ZIP = "@ShipZip";

private const string PARM_BILL_CITY = "@BillCity";
private const string PARM_BILL_STATE = "@BillState";
private const string PARM_BILL_ZIP = "@BillZip";

 const string PARM_BILL_COUNTRY = "@BillCountry";
 const string PARM_TOTAL = "@Total";

private const string PARM_BILL_FIRST_NAME = "@BillFirstName";

_SHIP_LAST_NAME = "@ShipLastName";

private const string PARM_ORDER_ID = "@OrderId";
ng PARM_LINE_NUMBER = "@LineNumber";

 PARM_ITEM_ID = "@ItemId";

 try {

 // Get each commands parameter arrays

In this appendix, we provide the program listings of the Order.cs module corresponding to
SQLServerDAL and NJDXDAL implementations.

PetShop.SQLServerDAL.Order.cs (234 lines of program code)

using System;
using System.Data;
using System.Diagnostics;
using System.Collections;
using System.Data.SqlClient;
u
using PetShop.IDAL;

namespace PetShop.SQLServerDAL {

 public class Order : IOrder{

 //Static constants
 private const string SQL_INSERT_ORDER = "Declare @ID int; Declare @ERR int; INSERT
INTO Orders VALUES(@UserId, @Date, @ShipAddress1, @ShipAddress2, @ShipCity, @ShipState,
@ShipZip, @ShipCountry, @BillAddress1, @BillAddress2, @BillCity, @BillState, @BillZip,
BillCountry, 'UPS', @Total, @BillFirs@

@ShipLastName, @CardNumber, @CardExpiration, @CardType, 'US_en'); SELECT @ID=@@IDENTITY;
INSERT INTO OrderStatus VALUES(@ID, @ID, GetDate(), 'P'); SELECT @ERR=@@ERROR;";
 private const string SQL_INSERT_ITEM = "INSERT INTO LineI

private const string SQL_SELECT_ORDER = "SELECT o.OrderDate, o.UserId, o.CardType,
o.
o.BillCity, o.BillState,
o.ShipAddr1, o.ShipAddr2,
o.
l WHERE o.OrderId = @OrderId AND o.orderid = l.orderid";
 private const string PARM_USER_ID = "@UserId";
 priv

 private const string PARM_SHIP_ADDRESS2 = "@ShipAddress2";
 private const string PARM_SHIP_CITY = "@ShipCity";
 private const string PARM_SHIP_STATE = "@ShipSta

 private const string PARM_SHIP_COUNTRY = "@ShipCountry";
 private const string PARM_BILL_ADDRESS1 = "@BillAddress1";
 private const string PARM_BILL_ADDRESS2 = "@BillAddress2";

private
 private

 private const string PARM_BILL_LAST_NAME = "@BillLastName";
 private const string PARM_SHIP_FIRST_NAME = "@ShipFirstName";
 private const string PARM
 private const string PARM_CARD_NUMBER = "@CardNumber";

n"; private const string PARM_CARD_EXPIRATION = "@CardExpiratio
 private const string PARM_CARD_TYPE = "@CardType";

 private const stri
 private const string
 private const string PARM_QUANTITY = "@Quantity";
 private const string PARM_PRICE = "@Price";

 public int Insert(OrderInfo order) {

 int orderId = 0;
 String strSQL = null;

©2005-2006 Software Tree, Inc., All right reserved

 SqlParameter[] orderParms = GetOrderParameters();
 SqlParameter statusParm = new SqlParameter

(PARM_ORDER_ID, SqlDbType.Int);

rId;
 orderParms[1].Value = order.Date;

ess1;
ess2;

orderParms[4].Value = order.ShippingAddress.City;
rParms[5].Value = order.ShippingAddress.State;

6].Value = order.ShippingAddress.Zip;
].Value = order.ShippingAddress.Country;

Value = order.BillingAddress.Address1;
alue = order.BillingAddress.Address2;

.Value = order.BillingAddress.City;
arms[11].Value = order.BillingAddress.State;

Parms[12].Value = order.BillingAddress.Zip;
e = order.BillingAddress.Country;

ue = order.OrderTotal;
lue = order.BillingAddress.FirstName;

alue = order.BillingAddress.LastName;
e = order.ShippingAddress.FirstName;

cord

neItems) {
EM + " @ID" + ",

, @Quantity"

);

@ID, @ERR";

he query, should return

 (SqlDataReader rdr = cmd.ExecuteReader
(CommandBehavior.CloseConnection)){

/Read the result

 SqlCommand cmd = new SqlCommand();
 // Set up the parameters
 orderParms[0].Value = order.Use

 orderParms[2].Value = order.ShippingAddress.Addr

 orderParms[3].Value = order.ShippingAddress.Addr

 orde
 orderParms[
 orderParms[7
 orderParms[8].
 orderParms[9].V

rms[10] orderPa
 orderP

 order
 orderParms[13].Valu

 orderParms[14].Val
 orderParms[15].Va

 orderParms[16].V
 orderParms[17].Valu
 orderParms[18].Value = order.ShippingAddress.LastName;
 orderParms[19].Value = order.CreditCard.CardNumber;
 orderParms[20].Value = order.CreditCard.CardExpiration;
 orderParms[21].Value = order.CreditCard.CardType;
 foreach (SqlParameter parm in orderParms)
 cmd.Parameters.Add(parm);

 // Create the connection to the database
 using (SqlConnection conn = new

SqlConnection(SQLHelper.CONN_STRING_DTC_ORDERS)) {

 // Open the database connection
 // Insert the order status
 strSQL = SQL_INSERT_ORDER;
 SqlParameter[] itemParms ;
 // For each line item, insert an orderline re
 int i = 0;
 foreach (LineItemInfo item in order.Li
 strSQL = strSQL + SQL_INSERT_IT

@LineNumber"+i + ", @ItemId" + i+ "
+ i + ", @Price" + i + "); SELECT
@ERR=@ERR+@@ERROR;";

 //Get the cached parameters
 itemParms = GetItemParameters(i

 itemParms[0].Value = item.Line;

tem.ItemId; itemParms[1].Value = i
 itemParms[2].Value = item.Quantity;
 itemParms[3].Value = item.Price;
 //Bind each parameter

s) foreach (SqlParameter parm in itemParm
 cmd.Parameters.Add(parm);
 i++;
 }

 conn.Open();
 cmd.Connection = conn;
 cmd.CommandType = CommandType.Text;

LECT cmd.CommandText = strSQL + "SE

 // Read the output of t

// orderid and error count
 using

 /
 rdr.Read();

©2005-2006 Software Tree, Inc., All right reserved

 // If the error count is not zero
// throw an exception

 if (rdr.GetInt3
 throw new Exc

2(1) != 0)
eption("DATA INTEGRITY

ERROR ON ORDER INSERT –
CK ISSUED");

m)) {

 Address

,

l);

);

(1),

 rdr.GetDecimal(21));

yList();

),

),
mal(25));

ROLLBA
 //Fetch the orderId
 orderId = rdr.GetInt32(0);
 }
 //Clear the parameters
 cmd.Parameters.Clear();
 }

 }catch(Exception e){
 throw e;
 }finally{
 }
 return orderId;

}

/// <summary>
/// Read an order from the database
/// </summary>
/// <param name="orderId"></param>
/// <returns></returns>
public OrderInfo GetOrder(int orderId) {

 //Create a parameter
 rameter parm = new SqlParameter(PARM_ORDER_ SqlPa ID,

SqlDbType.Int);
 parm.Value = orderId;

 //Execute a query to read the order
 using (SqlDat

SQLHelper.ExecuteReader
omman

aReader rdr =
TRING_DTC_ORDERS, (SQLHelper.CONN_S

 C dType.Text, SQL_SELECT_ORDER, par

 if (rdr.Read()) {

 //Generate an order header from the first row

ditCard = new CreditCardInfo CreditCardInfo cre
(rdr.GetString(2), rdr.GetString(3),
rdr.GetString(4));
Info billingAddress = new AddressInfo
(rdr.GetString(5), rdr.GetString(6),

etString(8),rdr.GetString(7), rdr.G
rdr.GetString(9), rdr.GetString(10)
rdr.GetString(11), rdr.GetString(12), nul

 AddressInfo shippingAddress = new AddressInfo
(rdr.GetString(13), rdr.GetString(14),
 rdr.GetString(15), rdr.GetString(16),
 rdr.GetString(17), rdr.GetString(18),
 rdr.GetString(19), rdr.GetString(20), null

Id, OrderInfo order = new OrderInfo(order

rdr.GetDateTime(0), rdr.GetString
, creditCard, billingAddress

shippingAddress,

 ArrayList lineItems = new Arra
 LineItemInfo item = null;

 //Create the lineitems from the first row and

// subsequent rows
 do{

22 nfo(rdr.GetString(
string.Empty, rdr.GetIn

 item = new LineItemI
t32(23

rdr.GetInt32(24), rdr.GetDeci

 lineItems.Add(item);
 }while(rdr.Read());

©2005-2006 Software Tree, Inc., All right reserved

 order.L o[])

lineItems.ToArray(typeof(LineItem
ineItems = (LineItemInf

Info));

 return order;
 }

cached parameters

{

elper.GetCachedParameters(SQL_INSERT_ORDER);

qlParameter[] {
 , SqlDbType.VarChar, 80),
 qlDbType.DateTime, 12),
 DDRESS1, SqlDbType.VarChar, 80),
 DDRESS2, SqlDbType.VarChar, 80),

qlDbType.VarChar, 80),
(PARM_SHIP_STATE, SqlDbType.VarChar, 80),

r, 50),
rChar, 50),

PARM_B lDbType.VarChar, 80),

E, SqlDbType.VarChar, 80),

pe.VarChar, 80),
L_LAST_NAME, SqlDbType.VarChar, 80),

w Sql r, 80),
w Sql 0),

 new SqlParameter(PARM_CARD_EXPIRATION, SqlDbType.Char, 10),

 SQLHelper.CachePara
 }
 return parms;

 privat stati SqlPar
SqlParameter[] parms = SQLHelper.GetCachedParameters(SQL_INSERT_ITEM

if (parms == null) {

 new SqlParameter(PARM_LINE_NUMBER + i, SqlDbType.Int, 4),
 new SqlParamete

SqlParamete
8)};

T_ITEM+i, parms);

 }
 return null;

}

 /// <summary>
 /// Internal function to get

/summary> /// <
 /// <returns></returns>
 private static SqlParameter[] GetOrderParameters()

ms = SqlPa mera ter[] par
SQLH

if (parms == null) {
 parms = new S
 new SqlParameter(PARM_USER_ID

arameter(PARM_DATE, S new SqlP
 new SqlParameter(PARM_SHIP_A

PARM_SHIP_A new SqlParameter(

 new SqlParameter

 new SqlParameter(PARM_SHIP_CITY, S

 new SqlParameter(PARM_SHIP_ZIP, SqlDbType.VarCha
 new SqlParameter(PARM_SHIP_COUNTRY, SqlDbType.Va
 new SqlParameter(PARM_BILL_ADDRESS1, SqlDbType.VarChar, 80),
 new SqlParameter(ILL_ADDRESS2, Sq
 new SqlParameter(PARM_BILL_CITY, SqlDbType.VarChar, 80),
 new SqlParameter(PARM_BILL_STAT
 new SqlParameter(PARM_B

ILL_ZIP, SqlDbType.VarChar, 50),
new SqlParameter(PARM_BILL_COUNTRY, SqlDbType.VarChar, 50),

 8),
 new SqlParameter(PARM_B

new SqlParameter(PARM_TOTAL, SqlDbType.Decimal,
ILL_FIRST_NAME, SqlDbTy

 new SqlParameter(PARM_BIL
 new SqlParameter(PARM_SHIP_FIRST_NAME, SqlDbType.VarChar, 80),

 ne Parameter(PARM_SHIP_LAST_NAME, SqlDbType.VarCha
 ne Parameter(PARM_CARD_NUMBER, SqlDbType.VarChar, 8

 new SqlParameter(PARM_CARD_TYPE, SqlDbType.VarChar, 80)};

meters(SQL_INSERT_ORDER, parms);

 }

 e c ameter[] GetItemParameters(int i) {

 +i);

 parms = new SqlParameter[] {
 //new SqlParameter(PARM_ORDER_ID + i, SqlDbType.Int, 4),

r(PARM_ITEM_ID+i, SqlDbType.Char, 10),
r(PARM_QUANTITY+i, SqlDbType.Int, 4), new

 new SqlParameter(PARM_PRICE+i, SqlDbType.Decimal,

 SQ er.CacheParameters(SQL_INSERLHelp

}
turn re parms;

}
 }
} // End of PetShop.SQLServerDAL.Order.cs

©2005-2006 Software Tree, Inc., All right reserved

PetShop.NJDXDAL.Order.cs (68 lines of program code)

using System;

x;

AL {

ndlers, IOrder{

(OrderInfo order) {

esource();

,0, null);

ummary>
ad an order from the database

 /// </summary>

urn value

finally {

 return order;
 }
 }
} // End of PetShop.NJDXDAL.Order.cs

using PetShop.Model;
using PetShop.IDAL;

retree.jusing com.softwa
using com.softwaretree.jdx;

namespace PetShop.NJDXD

 public class Order : Petshop_Orders_NJDXHa

 public int Insert

 int orderId = 0;
 try
 {
 checkoutJXR

 orderId = (int) getNextOrderId();
 order.OrderId = orderId;

 jxSession.tx_begin();

ng // The folowing statement is a work-around for inserti
 // a value in an IDENTITY column (OrderId)

" njdxHandle.SQLStatement("SET identity_insert Orders ON

 // insert the order object. Default is DEEP insert,

 // so lineItems will also be inserted.
 njdxHandle.insert(order, 0, null);
 jxSession.tx_commit();
 }
 catch (System.Exception e)
 {
 jxSession.tx_rollback();
 throw e;

}
 finally
 {
 checkinJXResource();

}
 return orderId;

 }

 /// <s

 /// Re

 /// <param name="orderId"></param>
 /// <returns></returns>

 public OrderInfo GetOrder(int orderId) {

 //Set up a ret
 OrderInfo order = null;

ry t
 {
 checkoutJXResource();
 ObjectId oid = ObjectId.createObjectId

("PetShop.Model.OrderInfo;_orderId="+orderId);
 order = (OrderInfo)njdxHandle.getObjectById(oid, false, 0, null);

 }
 catch (System.Exception e) {
 throw e;
 }

 checkinJXResource();

 }

©2005-2006 Software Tree, Inc., All right reserved

Trademarks

e Tree logo, JDX, NJDX, NJDX logo, and ‘The KISS OR-Mapper’ are
Inc. Windows, .NET, Visual Studio .NET, and C#.NET are

rporation.

Software Tree, Softwar
trademarks of Software Tree,
registered trademarks of Microsoft Co

©2005-2006 Software Tree, Inc., All right reserved

	A Project Report
	By
	February 7, 2006
	 Introduction
	 NJDX OR-Mapper Concepts
	Object-Relational Mapping File (ORMFile)
	Mapping Unit
	Domain Model Assembly (DM_ASSEMBLY)
	JXResource
	JXResourcePool

	Mapping Design
	 DAL Implementation using NJDX
	OR-Mapping files (petshop.jdx and petshop_orders.jdx)
	Utility classes (NJDXHandlers, Petshop_NJDXHandlers and Petshop_Orders_NJDXHandlers)
	PetShop.NJDXDAL project

	Summary
	Acknowledgements
	References
	 Appendix A
	PetShop.SQLServerDAL.Order.cs (234 lines of program code)
	 PetShop.NJDXDAL.Order.cs (68 lines of program code)

