Beyond JDBC™

JDBC is a standard Java ™ application programming interface
to relational datobases defined by Sun Microsystems
Although a useful technology, the use of JDBC forces
application developers to generate SQL statements explicitly.
This requires a lof of hand-coding of SQL statements and
processing the results. It is a very mundane, error-prone

and time-consuming job

DX provides an efficient, intuitive and object-oriented
interface to relational data. JDX exploits the JDBC standard
to talk to relational backends but application programmers
are freed from having o deal with the complexity of working
with two different programming paradigms (object-oriented

Java and relational SQIL)

Imagine the productivity gains resulting from such an intuitive
programming interface, avoiding impedance mismatch
between two different programming models, greatly reduced
program size, ease of maintenance, having tools fo generate
relational schema from Java class definitions and

vice-versa...!

Suplidy Dt itegration

Some of the issues to consider while
using raw JDBC
e Generation of SQL statements (SELECT, INSERT, UPDATE
and DELETE) for each class
Do you have to write these statements manually 2
What if you have hundreds of classes for your
application?

Hard coding of database column names Aaargh!

® What if a new attribute is added to a class or an affribute
name changes?
Al corresponding statements have 1o be updated

What if an attribute type changes?
The gefXXX call has fo be changed appropriately.
May involve database changes also.

What if a closs hierarchy is involved (e.g., a class Political
Title may inherit from Tifle and ifs objects may come
from a different fable)?
We have fo potentially collect obiects from multiple
tables. Lots of changes at many levels.

What if the class siructure is more complex (more
references, more levels)?
The code becomes exponentially complex!

What if we want to do directed queries for o complex
object (i.e., follow some references and ignore a few of
them etc.)?

How to specify such a query?

Do we repeat the hard-coded SQL statements in

different parts of the code 2

® How easily can this code be maintained/enhanced 2

o Wouldn't you rather be devoting more time fo
business logic2

www.soffwaretree.com



JDBC vs. JDX Example: Assume 2 classes - Title and RoySched. Each Title object has an
array of RoySched objects. Primitive attributes of Title objects come from titles table and
that of RoySched objects come from roysched table. We are trying to retrieve Title object(s)
corresponding to a title_id stored in a String variable

“Hid"JDBC Code. R =N

RoySched

JDBC Code

// Assuming a Connection object ‘con’ query = “SELECT title id, lorange, hirange,
// has been obtained to the database royalty FROM roysched” + “ WHERE

// Retrieve the Title object title_id='” + title.title_id + ™' + ™ ORDER
Statement stmt = con.crea tement () ; B e

rs = stmt.executeQuery (query);
// First fetch the titles table row ik

while (rs.next()) {
String query = “SELECT title id, type, price,

roySched = new RoySched () ;

title, ytd sales, pub_id,” + * pubdate, royalty,

ched.title id = rs.getString(“title id”);
advance, notes FROM titles” + “ WHERE - -

roySched.lorange = rs.getInt (“lorar
title id = ' + tid + “%;

roySched.hirange = rs.getInt (“hira
ResultSet rs = stmt.executeQuery (query); roySched.royalty = rs.getInt (“royalty”);:

e EEe o g FEeMg royscheds . addElement (roySched) ;

¥
while (rs.next()) {
stmt.close () ;

title.title id = rs.getString(“title id”);

title.type = rs.getString(“type”); // Init

alize title’s royscheds attribute with

rs.getBigDecimal (“price”, 2); // the collection of roysched objects
.gets

ring(“title”);
title.royscheds = new

title.ytd sales = rs.getInt (“ytd sales”);

RoySched [royScheds.size () ];

title.pub_.

rs.getString (“pub_id”);

royScheds. copyInto (title.royscheds);

title.pubdate =
rs.getTimestamp (“pubdate”) ;

title.royalty = rs.getInt (“royalty

JDX Code

"2y ; // Assuming a handle ‘jdx1’ t

title.advance =

rs.getBigDecimal (“advanc the JDX service

tle.notes =

.getString (“n

object has been obtained.

break; // Simplifying a: I Eee

Title object(s). In gene:

// row is returned.

many qualifying objects may be returned.
}
// Now fetch all the corresponding roysched VesiEers CRErEREEtilED = Jekloameny (s

// table rows Stitle id = ' + tid + *'%, -1,

null);

Vec

royScheds = new Vector();
Title title = (Title) queryResults.firstElement ();

RoySched roySched;

By using JDX, similar efficiencies are also gained for inserting,
updating or deleting objects.

*JDX, J-Database Exct e Tree lo

are trademarks of Software Tree. Java and JDBC are trademarks of Sun Microsystems, Inc

Software Tree, Inc.

™ 650 Saratoga Avenue, San Jose, (A 95129.
Tel: 408-557-6763. Fax: 408-557-6799

Suplidy Dt itegration

www.soffwaretree.com



